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Abstract
In this paper, we address a complex but practical scenario in semi-supervised learning (SSL) named open-set SSL, where
unlabeled data contain both in-distribution (ID) and out-of-distribution (OOD) samples. Unlike previous methods that only
consider ID samples to be useful and aim to filter out OOD ones completely during training, we argue that the exploration and
exploitation of both ID and OOD samples can benefit SSL. To support our claim, (i) we propose a prototype-based clustering
and identification algorithm that explores the inherent similarity and difference among samples at feature level and effectively
cluster them around several predefined ID and OOD prototypes, thereby enhancing feature learning and facilitating ID/OOD
identification; (ii) we propose an importance-based sampling method that exploits the difference in importance of each ID
and OOD sample to SSL, thereby reducing the sampling bias and improving the training. Our proposed method achieves
state-of-the-art in several challenging benchmarks, and improves upon existing SSL methods even when ID samples are
totally absent in unlabeled data.
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1 Introduction

Semi-supervised learning (SSL) is a promising machine
learning approach that exploits unlabeled data to mitigate
the costly data labeling process. Given a small set of labeled
data and a large set of unlabeled data, SSL aims to train a
classifier that surpasses its supervised variant trained only
on the labeled dataset. Classic SSL techniques include con-
sistency regularization (Sajjadi et al., 2016; Laine & Aila,
2017), pseudo labeling (a.k.a. self-training) (Lee et al., 2013;
Pham et al., 2021) and entropy minimization (Grandvalet
& Bengio, 2004). Recently, FixMatch (Sohn et al., 2020)
achieved state-of-the-art performance by simply combining
consistency regularization with pseudo labeling. Although
being effective, traditional SSL methods implicitly assumed
that the unlabeled data share the same label space with the
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Fig. 1 The comparison between our method and MTCF (Yu et al.,
2020). MTCF sets an independent OOD detection branch to the back-
bone, and performs ID/OOD classification on the features. OOD
samples are excluded from semi-supervised learning. Different from
MTCF, our method first clusters both ID and OOD features to proto-
types. Prototypes are assigned ID/OOD labels and unlabeled samples
are sampled by their importance and prototypes. Our method exploits
both ID and OOD data for the backbone training

labeled data during training, which limits their application in
the open-set real-world scenarios.

Open-set SSL extends SSL to open-set datasets where the
unlabeled data contain both in-distribution (ID) and out-of-
distribution (OOD) samples. Specifically, ID samples share
the same label space with labeled data while OOD samples
may be out of that label space. Yu et al. (2020) pioneered
this direction and proposed to eliminate the negative effects
of OOD samples using an OOD detector (Liang et al., 2018).
Thanks to the OOD detector, they identified high-confidence
ID samples and gradually incorporated them into the training
of aMixMatch (Berthelot et al., 2019)modelwith theirmulti-
task curriculum framework (Fig. 1).

Although MTCF (Yu et al., 2020) is effective, we argue
that it has the following two shortcomings. First, it over-
looks the role of OOD samples in feature learning. In their
method, OOD samples are excluded from SSL whereas we
argue that if being properly used, OOD samples can benefit
feature learning and thus SSL, especially when there are few
ID samples in the unlabelled dataset. Second, their method
depends on the performance of itsOODdetector and thus per-
forms poorly on high-variance datasets where the ambiguity
between ID and OOD samples makes it prone to misclassi-
fication. As pointed out by previous studies (Winkens et al.,
2020), near-OOD tasks where OOD samples are close to ID
ones can greatly lower the performance of OOD detection
method. Simply filtering out all OOD samples can be diffi-
cult and thus degrades the performance of semi-supervised
training when OOD samples dominate the unlabeled dataset.

In addition, their evaluation is based on synthetic OOD sam-
ples (Yu et al., 2020) (e.g. Gaussian noise, Uniform noise)
and images of completely irrelevant topics, which may not
generalize to real-world scenarios where OOD samples can
be “close” to ID ones.

In previous semi-supervised studies, pseudo labeling
is an important technique that can utilize the unlabeled
data and thus improve the performance of semi-supervised
methods. Pseudo labeling encourages the model to output
high-confidence prediction for unlabeled samples and thus
construct a better feature extractor (Sohn et al., 2020). How-
ever, if unlabeled data contains both ID and OOD images,
pseudo-labeling-based methods will force ID and OOD sam-
ples with the same label prediction to get closer, which
degrades the performance of the feature extractor and the
accuracy of ID/OOD classification. Therefore, our method
aims to construct and preserve the inner structure of both ID
and OOD features to train a better feature extractor and to
facilitate the ID/OOD classification.

In this paper,we address the aforementioned shortcomings
of open-set SSL by exploring and exploiting the unlabeled
data including both ID and OOD samples (Fig. 2). Specif-
ically, we first propose a prototype-based clustering and
identification algorithm that clarifies the ambiguity between
ID and OOD samples by exploring the inherent similarity
and difference among their features, and thus better identifies
the unlabeled samples. Then, we propose a novel importance
samplingmethod that reduces the sampling bias by exploiting
the difference in importance of each ID and OOD sam-
ple to SSL, thereby improving training. We implement this
method with our newly proposed cascading pooling strategy,
which increases the density of ID samples in mini-batches
and further stabilizes training. Empirically, we verify the
effectiveness of our method on three standard benchmark
datasets (CIFAR-100 (Krizhevsky et al., 2009), SVHN (Net-
zer et al., 2011) and TinyImageNet (Deng et al., 2009)) and
a new dataset, DomainNet-Real (Peng et al., 2019), which
is more challenging and realistic. In summary, our contribu-
tions include:

• We demonstrate that the performance of open-set semi-
supervised learning (SSL) can be improved by utilizing
out-of-distribution (OOD) samples.

• We design a novel prototype-based clustering and iden-
tification algorithm and demonstrate its effectiveness in
feature learning.

• We propose a new importance-based sampling method
that reduces sampling bias and improves training.

• We verify the effectiveness of our method on larger and
more challenging benchmarks including DomainNet-
Real and ImageNet (Deng et al., 2009). Extensive exper-
imental results on these benchmark datasets demonstrate
the superiority of our proposed method.
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Fig. 2 Exploration and exploitation of the unlabeled data including in-
distribution (ID) and out-of-distribution (OOD) samples. Exploration:
we cluster ID and OOD samples in each mini-batch and identify them
accordingly based on an exploration of the inherent similarity and dif-

ference of their features (represented by prototypes). Exploitation: we
exploit the different importance of each ID and OOD sample in SSL to
reduce the sampling bias during training

2 RelatedWorks

Semi-Supervised Learning (SSL) addresses the scarcity of
labeled data by leveraging the relationship between a small
amount of labeled data and a large amount of unlabeled
data. In general, two common SSL techniques that are
widely applied to semi-supervised learning are consistency
regularization andpseudo labeling (a.k.a. self-training).Con-
sistency regularization (CR) (Laine & Aila, 2017; Bachman
et al., 2014; Sajjadi et al., 2016; Zhai et al., 2019) assumes
that the classification results should only rely on the seman-
tics of input images, and penalizes the change of model
outputs against the perturbation or augmentation of input
images. Some CR methods employ adversarial perturba-
tion or dropout (Park et al., 2018; Wager et al., 2013) on
the input images while data augmentation (Berthelot et al.,
2019; Sajjadi et al., 2016) is widely recognized to be more
effective. From another perspective, pseudo labeling (Lee
et al., 2013; Pham et al., 2021) assigns pseudo labels to unla-
beleddata according to themodel’s prediction confidence and
steers its own training with those pseudo labels. FixMatch
(Sohn et al., 2020) combines the ideas of pseudo labeling
and consistency regularization, and achieves state-of-the-
art performance on several benchmarks for semi-supervised
learning. FixMatch utilizes two different augmentations of
the input image, strong augmentation, and weak augmenta-
tion, and trains the model with the strong-augmented images
and the pseudo labels generated by corresponding weak-
augmented images. Similar to pseudo labeling, Entropy
minimization (Grandvalet & Bengio, 2004) encourages the
model to output low-entropy (i.e. high confidence) predic-
tion for unlabeled samples. Besides, there have been other
techniques for semi-supervised learning. Temporal ensemble
(Laine & Aila, 2017) forms a consensus prediction for the
unlabeled data using the outputs of the network-in-training
on different epochs. Mean teacher (Tarvainen & Valpola,

2017) averages model weights instead of label predictions to
avoid the problem that temporal ensemble becomes unwieldy
when learning from large datasets. FlexMatch (Zhang et al.,
2021) proposes a curriculum learning approach for semi-
supervised learning to leverage unlabeled data according to
the model’s learning status. Some self-supervised methods
(Li et al., 2020) also employ prototype-based methods for
semi-supervised learning, however, their clustering strategies
are purely unsupervised and not applicable to OODdetection
during training.
Out-Of-Distribution (OOD) Identification (Liang et al.,
2018; DeVries & Taylor, 2018; Ming et al., 2022; Du et al.,
2022; Yang et al., xxx) aims to identify the OOD samples
in a given dataset which consists of both In-Distribution
classes and Out-Of-Distribution samples. For image clas-
sification, conventional methods like density estimation or
nearest neighbor (Chow, 1970; Vincent & Bengio, 2003;
Ghoting et al., 2008) are not applicable due to the high
dimensionality of image feature space. Addressing this issue,
DNN-based OOD detectors (Liang et al., 2018; Hendrycks
& Gimpel, 2017) have been proposed. Based on the obser-
vation that ID samples tend to have higher softmax scores,
Hendrycks and Gimpel (2017) propose a baseline method
for OOD detection without retraining networks. Liang et al.
(2018) improve such a baseline by introducing temperature
scaling in the softmax function to increase the softmax score
gap between ID and OOD samples. The difficulty of the
OOD detection depends on how semantically close to the
inlier classes, i.e., ID classes are to the outliers, i.e., OOD
samples. Winkens et al. (2020) distinguish the difficulty
difference between near-OOD tasks and far-OOD tasks by
the difference of state-of-the-art performance for area under
the receiver operating characteristic curve (AUROC). Some
methods (Lee et al., 2018; Liu et al., 2020; Hsu et al., 2020;
Sun et al., 2021) tackle the OOD detection problem by class
conditional Gaussian distributions, energy function or rec-
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tified activations. However, most of them detect the OOD
samples post hoc, which is not suitable for open-set semi-
supervised learning.
Open-Set Semi-Supervised Learning (Oliver et al., 2018; Yu
et al., 2020; Luo et al., 2021; Chen et al., 2020; Huang
et al., 2021; Park et al., 2022; He et al., 2022a, b; Fan et al.,
2023; Huang et al., 2022) aims to develop robust SSL algo-
rithms which work on “dirty” unlabeled data that contain
OOD samples. Oliver et al. (2018) first pointed out that
the performance of SSL techniques can degrade drastically
when the unlabeled data contain a different distribution of
classes. This inspires MTCF (Yu et al., 2020) which incor-
porates an OOD detection branch to MixMatch (Berthelot
et al., 2019) and works by gradually adding high-confidence
ID samples to semi-supervised training. However, it ignores
the contribution of consistency regularization to SSL, which
is independent to OOD detection. From this perspective,
OOD samples are harmless and can even be beneficial. Thus,
excluding them from training may not be the optimal solu-
tion and can be impractical for big datasets containing a
large proportion of OOD samples. To this end, we propose
to utilize OOD samples instead of filtering them out during
training. As a concurrent work, (Luo et al., 2021) viewed
the categorical difference between OOD and ID samples as
a distributional difference and attempted to reduce the distri-
bution divergence using style transfer. They also explored the
OODsamples during training via unsupervised data augmen-
tation (Xie et al., 2020). UASD (Chen et al., 2020) tackled
a problem called Class Distribution MisMatch where some
classes in the labeled data are absent in the unlabeled data,
and vice versa. Although looks similar, this problem is dif-
ferent from ours. Huang et al. (2021) propose a cross-modal
matching strategy to detect OOD samples and train the net-
work to match samples to an assigned one-hot class label.
Besides, some other works study the problem of novel cat-
egory discovery (Vaze et al., 2022; Wen et al., 2023; Zhang
et al., 2023; An et al., 2023) from unlabeled data, which
is a similar setting to open-set semi-supervised learning but
focuses on novel class discovery and estimation with clus-
tering accuracy.

3 Preliminary

Given a small labeled dataset X = {(xi , yi )}Nl
i=1 and a large

unlabeled dataset X̂ = {x̂i }Ni=1 where N � Nl and yi ∈
(1, . . . S), semi-supervised learning for classification aims to
learn a model that performs best by utilizing both X and X̂ .
Different from traditional semi-supervised learning, open-set
semi-supervised learning aims to utilize an unlabeled dataset
X̂ containing out-of-distribution sampleswhose ground truth
labels are not in (1, . . . S). Our method aims to train a model

to achieve higher accuracy on the test set which contains only
in-distribution data.

4 Method

Our method has two components: (i) a prototype-based
clustering and identification algorithm that learns better rep-
resentations for the identification of In-Distribution (ID) and
Out-Of-Distribution (OOD) samples by clustering them in
an unsupervised way; (ii) an importance sampling method
that samples unlabeled data according to their importance to
SSL, thereby reducing the sampling bias and improving the
training (Fig. 4). Specifically, our clustering and identifica-
tion algorithm helps pseudo-labeling by pushing ambiguous
ID and OOD samples away from each other (towards dif-
ferent prototypes) in the feature space. Note that as an
unsupervised representation learning method, our clustering
process benefits a lot from the OOD data that “augment”
the dataset. The resulting clusters can be binarily identified
as ID and OOD ones according to labeled data. Based on
the identification, we design a novel importance sampling
method that assigns importance scores to unlabeled data and
samples them accordingly. This addresses the problem of
randomsamplingwhere early-identified ID samples are over-
sampled while later ones are under-sampled. Furthermore,
we devise a cascading pooling strategy to improve the density
of ID samples inmini-batch training, which further stabilizes
the training. The overview of our method is shown in Algo-
rithm 1.

Algorithm 1 Overview of our method.
Require: initialized prototypes
Ensure: clustering loss Lc, semi-supervised loss LSSL , class number

S
1: for number of training iterations do
2: Sample a minibatch of labeled samples
3: Sample a minibatch of unlabeled samples from our pyramid of

sample pools
4: Compute semi-supervised learning loss LSSL for labeled andunla-

beled minibatches
5: for each sample do
6: for each class s ∈ {1, 2, . . . , S} do
7: Compute Lc (Eq. 2) and Ly

labeled (Eq. 3) for unlabeled sam-
ples and labeled samples of class s respectively using our
prototype-based clustering algorithm

8: Update the prototypes using Eq. 5
9: Update the sample pools accordingly
10: end for
11: end for
12: end for
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4.1 Prototype-Based Clustering and Identification

As Fig. 3 (top row) shows, ID and OOD samples are mixed
in unlabeled data. A key defect of open-set pseudo labeling
is that OOD samples can easily be misclassified as ID sam-
ples, thereby confusing the feature extractor. Addressing this
issue, we propose a prototype-based clustering algorithm to
clarify the ambiguity between ID and OOD samples (Fig. 3,
bottom row). Let F be an SSL classifier, x̂i be a sample in
the unlabeled dataset X̂ = {x̂i }Ni=1, ŝ be the pseudo label of
x̂i assigned by F , F(x̂i ) be the output probabilities of F with
input x̂i , and f (x̂i ) be the normalized feature extracted by f
(a subnetwork of F , a.k.a. a feature extractor), our clustering
algorithm is detailed as follows:
Prototype Initialization. This step aims to set up K ini-
tial prototypes psj , j ∈ {1, 2, . . . , K } for each class s ∈
{1, 2, . . . , S}. First, we pretrain F until each class s con-
tains at least L unlabelled samples, L � N/S where N is
the unlabeled set size. These samples are assigned pseudo
labels ŝ. Then, for each class s, we extract the features of all
its unlabeled samples by f and initialize our prototypes psj
(Fig. 3, black marks) as the k-means cluster centers of the
extracted features. In this step, both K and L are hyperpa-
rameters (Fig. 4).
Clustering Loss. For each unlabeled sample x̂i in a mini-
batch during training, given its pseudo label ŝ (generated
by SSL method) and the associated K prototypes psj , j ∈
{1, 2, . . . , K } of class s, we define our prototype-based clus-

tering loss as:

Ls
c(x̂i ) =

− log
exp( f (x̂i ) · ps∗/τ)

∑K
j=1 exp( f (x̂i ) · psj/τ)

1(max(F(x̂i )) > tc),
(1)

where 1 is an indicator function, tc is a threshold parameter,
ps∗ is the prototype that is closest to f (x̂i ) in Euclidean space,
τ is a temperature parameter used in self-supervised learn-
ing (Chen et al., 2020). Following previous studies (Chen
et al., 2020; He et al., 2020; Wu et al., 2018), both f (x̂i ) and
ps∗ are normalized, and thus f (x̂i ) · ps∗ is the cosine similarity
between them. Intuitively, minimizing Ls

c(x̂i ) guides classi-
fier F to generate features f (x̂i ) closer to ps∗ but further to
other prototypes. Thus, the overall loss across a mini-batch
of unlabeled samples is:

Lc =
BS∑

j=1

Ls
c(x̂ j ) (2)

where BS is the batch size. Lc is used as an additional loss
term in the SSL loss function.

In addition to the clustering loss for unlabeled data, we
further apply a similar loss to the labeled data, clustering
them to the same centers. Specifically, given a labeled sample
xi (1 ≤ i ≤ Ny) and its ground truth label y, where Ny is
the total number of labeled samples with label y, we define
the loss as:

Fig. 3 Illustration of our prototype-based clustering method. Top row:
Semi-supervised learning (SSL) methods might be confused by the
OOD samples and incorrectly assign in-distribution (ID) pseudo labels
to them, which degrades their performance. Bottom row:With our clus-
tering method, ID and OOD samples are pushed away from each other

towards a set of pre-defined prototypes (black marks), which clarifies
the ambiguity between ID and OOD samples and facilitates ID/OOD
identification. The blue and green marks represent the unlabeled data
and labeled data clustering respectively. The positions of the prototypes
are dynamically updated during training
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Fig. 4 Overview of our method. We propose two techniques,
a prototype-based clustering and identification algorithm, and an
importance-based sampling method to improve the performance of
open-set semi-supervised learning (SSL). Our clustering and identifica-

tion algorithm clusters samples at the feature level and thus facilitates
feature learning by increasing the distances between ID and OOD
samples. Our importance-based sampling method facilitates SSL by
reducing the sampling bias during training

Ly
labeled(xi ) = − f (xi ) · qy + Ls

c(xi ), (3)

where qy is the normalized feature center of class y:

qy = normalize(

Ny∑

i=1

f (xi )). (4)

In Eq. 3, the first term aims to cluster all labeled samples of
the same class towards their normalized feature center qy ,
preventing them from being misaligned to different ID/OOD
centers; the second term applies the same clustering loss for
unlabeled data (Eq. 1) to labeled data, indicating that both the
labeled and unlabeled ID samples should be clustered to the
same centers. The clustering loss clusters the features of both
labeled and unlabeled data in a semi-supervisedmanner, thus
separates the ID and OOD data into different cluster centers.
Prototype Update. At the same time, for each sample x̂i in a
mini-batch during training,wedynamically update its nearest
prototype ps∗ as a moving average:

ps∗,(t+1) = normalize(α ps∗,(t) + β f (x̂i )), (5)

where α = 0.99 and β = 0.01 are weighting parameters
following the common practice of momentum update.

With our prototype-based clustering algorithm, pseudo-
labeled samples in each class s are clustered according to the
similarity of their features. As a result, heterogeneous sam-
ples are pushed away from each other. This helps SSL as the
difference between OOD and ID samples are also clarified,

thereby helping the feature extractor to learn better represen-
tations. Thus, OOD samples are less likely to bemisclassified
as ID samples and damage the self-training. Based on the
clustering results, we identify ID/OOD samples as follows.
Sample Identification. First, we identify the unlabeled ID
samples to be included in the pools according to their dis-
tances to the labeled ID samples in the labeled dataset
X = {(xi , si )}Nl

i=1, si ∈ {1, 2, . . . , S} where S is the number
of classes. Let f (xi ) be the normalized feature of xi that is
extracted by f , we can calculate the per-class feature centers
of the labeled data as:

Os =
∑Nl

i=1 1(si = s) f (xi )
∑Nl

i=1 1(si = s)
, s ∈ {1, 2, . . . , S} (6)

where 1 is an indicator function. Since all labeled images
are ID samples, an unlabeled sample with pseudo label s
tends to be ID if its corresponding prototype ps∗ is close to
Os . Therefore, for each class s, we compute the Euclidean
distances from Os to each of its prototypes psj . According to
these distances, we sort all prototypes psj in increasing order
and pick the first Nid of them as ID prototypes. For each
unlabeled sample x̂i in a mini-batch, we identify it as ID if
its closest prototype ps∗ is an ID prototype. Otherwise, x̂i is
identified as OOD. In this step, Nid is a hyperparameter.

4.2 Importance Sampling for Open-Set SSL

Recalling the definition of Open-set SSL where the dataset
contains two types of samples, i.e. ID and OOD samples, it
is straightforward to assume that they are of different impor-
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tance to SSL: ID samples are useful while OOD ones are less
relevant for the target task. Such an assumptionmotivates the
selection of ID samples in SSL that is widely employed in
previous methods. Despite that OOD samples can help the
training of semi-supervised methods, overwhelming OOD
samples in mini-batches will unstabilize the training and
lower the performance when the number of images are large
and the batch size is small. Therefore, We follow the ID sam-
ple selection paradigm and try to improve the performance
by making the classifier concentrate on ID samples while
utilizing the information of OOD samples. Unlike previous
methods, we noticed that ID samples are dynamically iden-
tified during training. Thus, the ID samples identified earlier
occur more often in random sampling and are thus biased.
This is undesirable as they can soon be well-learned and con-
tribute less to the training than newly identified ones. To this
end, we propose a novel importance sampling method for
mini-batch sampling during training that assigns importance
scores to unlabeled samples and onlymaintains the important
ones in the sample pools as follows.
Importance-based Sample Pools. After identification, the
identified OOD samples are assigned importance scores of
0 and excluded from SSL; the identified ID samples are
assigned importance scores of 1/I (x̂i ) where I (x̂i ) is the
number of times x̂i is identified as an ID sample through-
out the training. We maintain the identified ID samples
in our per-class importance-based sample pools Ps , where
s ∈ {1, 2, . . . , S} is the class label. We restrict Ps to contain
at most Np samples, Np � BS where BS is the batch size.
During mini-batch training, assume that Ns ID samples are
identified for class s in one iteration, we update Ps by:
- Case 1. If Ps has enough space, we simply add the Ns ID
samples to Ps .
- Case 2. Otherwise, assuming that the shortfall of empty
space for Ns ID samples is M , we first add the Ns − M
ID samples to Ps . For the rest M ID samples, we compute
probability Px̂i for each sample x̂i in Ps , i ∈ {1, 2, . . . , NP }
using their importance scores as:

Px̂i = min{M I (x̂i )
∑Np

j=1 I (x̂ j )
, 1}. (7)

Then, we select each sample by probability Px̂i and obtain
Nr samples. Please note that we multiply the probability by
M because we try to select M samples from the sample pool
Ps . We replace the first min(Nr , M) of them with the newly
identified ID samples.

Intuitively, an ID sample is more likely to be removed
from Ps if it is sampled more often, i.e., it is well-learned.

However, it is difficult to identify ID samples accurately
by performing the identification once when the unlabeled set
is complicated andOODdata can benefit the semi-supervised
training. Besides, the density of ID samples in a mini-batch

is important for the performance as we show in Sect. 5.4. To
this end, we devise a cascading pooling strategy to further
improve the density of ID samples as follows, and it can help
to stabilize the SSL training by providing high-density ID
samples within a mini-batch.
Cascading Sample Pools. Let S be the number of classes, we
cascade different sets of sample pools as a pyramid:

• Level 0 of the pyramid is the raw dataset.
• Level 1 is a set of S ID sample pools. The capacity of
each sample pool is NP .

• Level 2 is a set of S ID sample pools. The capacity of
each sample pool is NP/2.

• ......
• Level N is a set of S ID sample pools. The capacity of
each sample pool is NP/2N−1.

During training, we circularly draw mini-batches of samples
in a level-wise manner from Level 0 to Level N. In each
training iteration, we draw samples evenly from the S sample
pools in the same level and apply ID sample identification
to it. The newly identified ID samples are used to update the
sample pools at the next level.

5 Experiment

5.1 Experimental Setup

Datasets. Following the common practice in SSL evalu-
ation (Sohn et al., 2020), we test our method on four
benchmark datasets:
- CIFAR-100 (Krizhevsky et al., 2009): a dataset consisting
of 100 classes of natural images. Each class contains 500
training images and 100 testing images.
- SVHN (Netzer et al., 2011): a dataset consisting of 10
classes of digits images. It contains 73,257 and 26,032 digits
images for training and testing respectively.
- TinyImageNet: a subset of the ImageNet dataset (Deng et al.,
2009) consisting of 200 classes of natural images. Each class
contains 500 images for training and 50 images for testing.

And a more challenging and realistic dataset:
- DomainNet-Real (Peng et al., 2019): DomainNet is a
dataset consisting of 345 classes of images in 6 domains (e.g.
real, painting, sketch). In our experiments, we only use the
172,947 images in its Real domain as we observed that Fix-
Match (Sohn et al., 2020) performs poorly in some domains.
Implementation Details. We implement our method on top
of FixMatch (Sohn et al., 2020), a state-of-the-art SSL algo-
rithm. In addition to the relatively standard pseudo labeling,
FixMatch used another common SSL technique: consistency
regularization. In a nutshell, it encourages the SSL classifier
to output the same value for two variants of an unlabeled sam-
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ple x̂i : a weak-augmented variant x̂ai and a strong-augmented
variant x̂bi . Accordingly, for class s and sample x̂i , we extend

Ls
c (Eq. 1) to Ls,CR

c as follows:

Ls,CR
c (x̂i ) = Ls

c(x̂
a
i ) + Ls

c(x̂
b
i ) (8)

Note thatwe use the same target prototype ps∗ that is closest to
the weak-augmented variant x̂ai for both Ls

c(x̂
a
i ) and Ls

c(x̂
b
i )

because (i) heuristically, x̂ai is weak-augmented and thus
closer to x̂i in the feature space; (ii) in line with consistency
regularization, x̂ai and x̂bi share the same semantic meanings
and shouldbe in the samecluster, i.e.with the sameprototype.
Similarly, we only use the weak-augmented variants of unla-
beled samples in prototype update and sample identification.
Following FixMatch, we employ different network architec-
tures for different datasets. We tune the hyper-parameters
using a small validation set.

• For CIFAR-100, SVHN and TinyImageNet, we follow
FixMatch (Sohn et al., 2020) and use the same architec-
ture based on Wide ResNet (WRN 28×8) (Zagoruyko &
Komodakis, 2016). All images are resized to 32 × 32.
We set the number of prototypes K = 10 and the weight
of Lc as 0.01 when added to the FixMatch loss function.
Following (Chen et al., 2020), we set τ = 0.07 and
tc = 0.98, which is slightly higher than FixMatch’s
pseudo labeling threshold of 0.95. We use the same
hyperparameters of FixMatch (Sohn et al., 2020) in the
semi-supervised learning (SSL) part of our method. We
run our method on 1 Nvidia Tesla V100 GPUwith 16GB
memory and set the batch size as 64 for labeled data and
448 (64×7) for unlabeled data. We report the experimen-
tal results after 100 epochs of training.

• For DomainNet-Real, we use the ResNet-50 (He et al.,
2016) architecture. All images are resized to 224×224.
We set the number of prototypes K = 30 and the weight
of Lc as 0.1 when added to the FixMatch loss func-
tion. Following the ImageNet (Deng et al., 2009) training
scheme in FixMatch (Sohn et al., 2020), we set tc = 0.7
which equals to FixMatch’s pseudo labeling threshold.
In our experiment, Nid = K/5. We use the same hyper-
parameters of FixMatch (Sohn et al., 2020). We run our
method on 6 Nvidia Tesla V100 GPUs and report the
experimental results after 100 epochs of training. For
each GPU, we set the batch size as 8 for labeled data
and 56 for unlabeled data. Following FixMatch (Sohn
et al., 2020), we apply linear warmup to the learning rate
for the first 5 epochs of training until it reaches an initial
value of 0.4.
At epoch 60, we decay the learning rate by multiplying
it by 0.1.

Experimental Settings. (1) ID vs. OOD. For CIFAR-100,
TinyImageNet and SVHN, ID samples are defined as the
images in the first N classes; OOD samples are defined as
those in the rest classes. For DomainNet-Real, ID samples
are defined as the images in the N classes with the most
images; OOD samples are defined as the 50k images sam-
pled from the rest classes, which aims to balance the numbers
of ID and OOD samples. (2) Labeled vs. unlabeled. For all
datasets, labeled data is defined as the first 25 images and
their associated labels in each of the N classes; unlabeled
data is defined as the rest images in each of the N classes
together with the OOD samples. (3) Training vs. Testing.
For DomainNet, for each of the N classes, the testing set is
defined as the 100 images sampled from the unlabeled data in
the class; For the other three datasets, we directly use the pre-
defined testing set; the training set is defined as other images
(including both labeled and unlabeled data) in the class. Fur-
thermore, we report the average performance of the last 10
epochs over 3 runs using the same set of random seeds. The
3 runs use different random seeds.

5.2 Experimental Result

As Table 1 shows, our method significantly outperforms pre-
vious open-set semi-supervised learning and OOD detection
methods includingMTCF (Yu et al., 2020), DS3L (Guo et al.,
2020), Energy (Liu et al., 2020), ReAct (Sun et al., 2021) and
OpenMatch (Saito et al., 2021). To give a better idea of how
well our method performs, we provide two additional base-
lines using FixMatch (Sohn et al., 2020):

• “Labeled Only”: a FixMatch model trained with labeled
data only, which can be viewed as a lower bound.

• “Clean”: a FixMatchmodel trainedwith ID samples only,
which can be viewed as an improved baseline.

We test all methods on three datasets: CIFAR-100, TinyIm-
ageNet and DomainNet-Real.1 As discussed in the “Experi-
mental Setup” section, for each dataset, we define the images
in its first N (N = 10, 20) classes as the ID samples; theOOD
samples are defined accordingly.

• For CIFAR-100 and TinyImageNet, we observed small
gaps between FixMatch and Clean, which leaves small
room for improvement. Similar to Yu et al. (2020), we
conjecture that the reason is the relatively simple datasets
being used. However, it is interesting to see that our
method outperforms “Clean” on CIFAR-100, 10/90 and
20/80 (10/20 ID classes and 90/80 OOD classes from
CIFAR-100). This implies that OOD samples are also

1 We did not use SVHN because it has only 10 classes and thus cannot
fit into this experiment.
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Table 1 Experimental results on Open-Set Semi-Supervised Learning

Datasets DomainNet-Real CIFAR-100 TinyImageNet
ID/OOD 10/50k∗ 20/50k∗ 10/90 20/80 10/190 20/180

Labeled Only 48.5 ± 1.0 41.6 ± 0.7 47.3 ± 1.8 40.0 ± 0.4 36.9 ± 2.3 32.2 ± 0.9

FixMatch (Sohn et al., 2020) 52.8 ± 2.9 49.7 ± 2.5 80.8 ± 0.9 72.2 ± 0.2 68.9 ± 0.7 53.6 ± 1.0

MTCF (Yu et al., 2020) 54.2 ± 1.8 46.3 ± 0.4 59.8 ± 0.6 46.2 ± 1.0 52.4 ± 1.2 46.5 ± 0.6

DS3L (Guo et al., 2020)† – – 57.0 ± 0.7 40.2 ± 1.0 52.2 ± 2.7 40.0 ± 1.6

Energy (Liu et al., 2020) 50.1 ± 1.8 45.9 ± 1.0 82.5 ± 0.7 72.9 ± 1.6 67.3 ± 2.0 56.5 ± 1.5

ReAct (Sun et al., 2021) 50.1 ± 1.1 46.6 ± 0.7 82.9 ± 0.7 73.3 ± 2.0 69.5 ± 1.7 57.7 ± 2.0

OpenMatch (Saito et al., 2021) 54.8 ± 2.6 50.4 ± 1.2 83.0 ± 1.0 73.3 ± 2.5 68.7 ± 2.8 54.8 ± 1.0

Ours 59.4 ± 0.3 54.3 ± 1.2 85.5 ± 0.8 76.0 ± 1.1 71.4 ± 0.7 58.5 ± 1.1

Clean 63.5 ± 0.7 60.7 ± 0.8 84.8 ± 0.7 72.3 ± 0.4 79.5 ± 0.8 60.3 ± 0.3

Our method outperforms MTCF (Yu et al., 2020) and improves FixMatch (Sohn et al., 2020) by a significant margin. ID/OOD: the number of
classes whose images are defined as ID and OOD samples respectively. (·)/50k∗: to balance the numbers of ID and OOD samples, we sample 50k
images from the classes other than (·) in DomainNet-Real as OOD samples. †: DS3L consumes too much memory and time on DomainNet-Real
and cannot run on commodity workstations

Table 2 Experiment results on ImageNet with 50/950 and 100/900
ID/OOD class settings

Dataset ImageNet
ID/OOD 50/950 100/900

FixMatch (Sohn et al., 2020) 29.6 ± 0.6 28.1 ± 0.9

Mask-OOD 31.6 ± 0.8 29.4 ± 0.6

SimCLR-OOD 32.8 ± 0.4 30.7 ± 0.9

Ours 33.3 ± 0.6 30.4 ± 1.0

Clean 40.1 ± 0.9 39.7 ± 0.5

useful in SSL, which contradicts the common belief that
OOD samples are harmful.

• For DomainNet-Real, we observed approximately 10%
gaps between FixMatch and Clean. In such challeng-
ing scenarios, our method also significantly outperforms
MTCF (Yu et al., 2020) and FixMatch (Sohn et al., 2020).
However, there is a considerable gap between ourmethod
and “Clean”, which suggests that there is still room for
improvement.

In summary, experimental results show that our method
performs the best against competing methods in all six
settings (two for each dataset), which indicates that the
improvement brought by our method can be generalized to a
variety of datasets and ID/OOD ratios.

5.3 Experimental Result on ImageNet

To investigate the effectiveness of our method on larger
and more complicated datasets, we further applied our
method to ImageNet (Deng et al., 2009) under the open-
set semi-supervised setting. The experiments on ImageNet
are conducted in two different settings, 50 ID classes, and

100 ID classes respectively. More specifically, we first ran-
domly select 50/100 classes from all 1000 categories, then
use the rest as OOD classes. To align with the experiments in
Table 1, each ID class has 25 labeled samples. We adopt
the same hyper-parameter settings as the experiments on
DomainNet-Real, which are consistent with the setting of
FixMatch on ImageNet. For the 50/950 ID/OOD class exper-
iment, the FixMatch baseline achieves 29.6% ± 0.6 and the
Clean model achieves 40.1% ± 0.9. Our method improves
the performance by 3.7% and gets 33.3% ± 0.6 accuracy.
For the 100/900 ID/OOD class experiment, the FixMatch
baseline achieves 28.1%± 0.9 and the Clean model achieves
39.7%± 0.5.Ourmethod improves the performance by 2.3%
and achieves 30.4% ± 1.0. The experimental results demon-
strate that our method can be applied to larger datasets with
millions of OOD samples.

We further provide the performance of two variants of
FixMatch, Masked-OOD and SimCLR-OOD in Table 2.
The two variant models are used to verify the motivation
of our method and study the effectiveness of OOD sam-
ple utilization. More specifically, The Masked-OOD model
set the loss weight for all OOD unlabeled samples as zero
so that the OOD samples are ignored in FixMatch train-
ing. The SimCLR-OOD model adds a SimCLR (Chen et al.,
2020) loss term for OOD samples only in the model train-
ing. Please note that the two variant models have access to
the ground truth ID/OOD labels for all unlabeled samples
during training, while Ours needs to perform the ID/OOD
classification in both training and testing. More details of
the two variant models can be found in Sect. 5.4. As shown
in Table 2, Mask-OOD outperforms the FixMatch baseline
and demonstrates the benefit of OOD sample elimination in
semi-supervised learning. More importantly, SimCLR-OOD
works better than both FixMatch and Mask-OOD, which
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Table 3 Justification of OOD
samples’ benefits in SSL

Method DomainNet-Real

(a)Normal case

FixMatch (Sohn et al., 2020) 49.7 ± 2.5

Mask-OOD 54.3 ± 0.7

SimCLR-OOD 56.7 ± 0.4

Clean 60.7 ± 0.8

Datasets CIFAR-100 SVHN TinyImageNet
ID/OOD 10/90 S10/C100∗ 20/180

(b)Extreme case

Labeled Only 47.3 ± 1.8 24.6 ± 2.4 32.2 ± 0.9

FixMatch 68.7 ± 1.5 43.4 ± 2.7 46.9 ± 0.4

Ours (Clustering) 73.5 ± 1.3 50.2 ± 2.9 52.0 ± 0.9

ID/OOD: the number of classes whose images are defined as ID and OOD samples. S10 / C100∗: 10 ID
classes are selected from SVHN and 100 OOD classes are selected from CIFAR-100

indicates that exploiting OOD samples properly can bene-
fit the semi-supervised training and works better than simply
filtering them out. Our method outperforms Mask-OOD and
achieves comparable performance to SimCLR-OOD with-
out access to ground-truth ID/OOD labels. The experiment
results show that our method can exploit the OOD samples
in open-set semi-supervised learning on larger benchmarks.
More analysis can be found in Sect. 5.4.

5.4 Do OOD Samples Really Benefit SSL?

This section justifies the motivation of our method: if being
“properly” used, OOD samples can benefit SSL. To verify
this claim,we assume that all unlabeled samples are perfectly
identified as ID and OOD samples before training. Based
on this assumption, we propose two strategies to handle the
OOD samples when training a FixMatch (Sohn et al., 2020)
based SSL model:

• Mask-OOD masks all OOD samples by setting their
weights to 0 in the FixMatch loss function.

• SimCLR-OOD adds a SimCLR loss term (Chen et al.,
2020) for OOD samples in the FixMatch loss function.

Table 3 shows the results of Mask-OOD and SimCLR-
OOD against the original FixMatch and “Clean” on the
DomainNet-Real dataset. We use the same hyperparame-
ters for all methods. Note that Mask-OOD is different from
“Clean” as it does not remove the OOD samples and thus
keeps the density of ID samples in mini-batches. It can be
observed that: (i) Mask-OOD works better than the original
FixMatch, which is consistent with the common belief that
OOD is harmful to SSL. (ii) Mask-OOD works worse than
SimCLR-OOD, which justifies our claim that compared to
filtering out OOD samples, exploiting them properly bene-

fits SSL. (iii) Mask-OOD works worse than “Clean”, which
indicates that the performance of SSL depends on the density
of ID samples in a mini-batch. This motivates the use of our
cascading pooling strategy. Please note that bothMask-OOD
and SimCLR-OOD are conducted under a different setting to
models in Table 1, as Mask-OOD and SimCLR-OOD have
access to the ground truth ID/OOD label for all unlabeled
data. In Table 1, the models do not know whether an unla-
beled sample is ID or OOD but have to perform ID/OOD
identification on their own.
Extreme Case Study. To further justify the motivation of
our method, we test the performance of our method in an
extreme case of open-set SSL where all unlabeled samples
are OOD. To implement it, we remove all unlabeled ID sam-
ples from the training dataset. Note that we also remove the
importance-based sampling method as it is useless in this
scenario. Specifically, we compare our method (with cluster-
ing only) with FixMatch (Sohn et al., 2020) and its variant
“Labeled Only”2 on three datasets: CIFAR-100, SVHN and
TinyImageNet. For CIFAR-100 and TinyImageNet, we set
up the labeled ID samples and the unlabelled OOD sam-
ples within the same datasets. For SVHN, we set up the
labeled ID samples from all its 10 classes and borrow the
images from CIFAR-100 as the unlabeled OOD samples. As
Table 3b shows, it can be concluded that Unlabeled OOD
samples can still benefit SSL without unlabeled ID samples,
which is justified by the observation that both Ours (Cluster-
ing) and FixMatch outperform “Labeled Only”. This further
justifies our motivation that OOD samples DO benefit SSL.

2 In this case, “Clean” degenerates to “Labeled Only”.
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5.5 Ablation Study

This section studies the extent to which our proposed
prototype-based clustering and identification algorithm and
our importance sampling method contribute to the per-
formance gains respectively. Specifically, we start from
the original FixMatch (Sohn et al., 2020) and add our
prototype-based clustering and identification algorithm, and
our importance-based sampling method in turn. To further
demonstrate the effectiveness of our method, we also tested
several variants of our two components, including: Cluster-
ing (Weak&Unlabeled-Only), which ignores the strongly-
augmented samples and only clusters the weakly-augmented
samples without the first term of Eq. 3 during training; Clus-
tering (Weak-Only), which ignores the strongly-augmented
samples and only clusters the weakly-augmented samples
during training with both Eq. 2 and Eq. 3; Clustering (tc =
0), which sets the confidence threshold tc in Eq 1 as 0
to remove the filtering strategy in clustering; Refinement
(Random), which randomly selects the ID samples iden-
tified in the clustering procedure for training; Refinement
(Importance), which removes the cascading sample pools
and only uses importance-based sampling for training. All
these methods are tested on two settings of the DomainNet-
Real dataset with “Clean” as a reference. The experimental
results are shown in Table 4. It can be observed that: (i) Our
clustering and identification algorithm improves the perfor-
mance over FixMatch by 2.2% and 2.8% respectively. The
strong augmentation and the labeled sample clustering con-
tribute to performance improvement with 0.8% and 0.4% on
10/50k, 0.9% and 0.6% on 20/50k respectively. (ii) Adding
our importance-based sampling method can further improve
the performance by 4.4% and 1.8% respectively (i.e. 6.6%
and 4.6% higher than FixMatch). Note that “importance
sampling only” is not a valid variant because our importance-
based sampling method relies on the identification results
and cannot be used independently. (iii) The filtering strat-

Table 5 Integrating our method in UDA (Xie et al., 2020) improves its
performance on open-set SSL tasks (CIFAR-100)

Datasets CIFAR-100
ID/OOD 10/90 20/80

UDA (Xie et al., 2020) 38.9 ± 1.5 39.9 ± 2.1

+ Our Method 48.4 ± 1.1 43.1 ± 1.7

Clean(UDA) 67.9 ± 0.5 63.4 ± 0.9

FlexMatch (Zhang et al., 2021) 86.6 ± 0.3 80.9 ± 0.8

+ Our Method 88.0 ± 0.3 84.8 ± 0.4

Clean(FlexMatch) 88.1 ± 0.1 83.1 ± 0.1

egy is important for the performance of clustering. tc = 0
reduces the accuracy by1.6%and1.5%on10/50k and20/50k
respectively, because the clustering loss could cluster both
high-confidence and low-confidence samples to the same
prototype, and thus hinders the pseudo-labeling training of
semi-supervised learning.

To demonstrate that our method generalizes to other SSL
methods, we integrate our method to UDA (Xie et al., 2020)
and FlexMatch (Zhang et al., 2021) and test their perfor-
mance on CIFAR-100 dataset (Table 5). It can be observed
that our method improves the performance of UDA and Flex-
Match under open-set settings by a significant margin.

5.6 Robustness Against ID/OOD Ratios

To demonstrate the robustness of our method against differ-
ent ratios of ID/OOD samples in the training dataset, we test
our method against the FixMatch (Sohn et al., 2020) baseline
and its “Clean” variant on CIFAR-100 (Krizhevsky et al.,
2009) dataset against four different ID/OOD ratios: 10/90,
20/80, 30/70 and 40/60. We report the average performance
over three runs. As Fig. 5 shows, our method outperforms
the FixMatch baseline in all four settings and achieves higher
accuracy than the Cleanmodel in three settings: 10/90, 20/80

Table 4 Ablation study Datasets DomainNet-Real
Method 10/50k∗ 20/50k∗

FixMatch (Sohn et al., 2020) 52.8 ± 2.9 49.7 ± 2.5

+ clustering (Weak&Unlabeled-Only) 53.8 ± 1.1 51.0 ± 0.4

+ clustering (Weak-Only) 54.2 ± 1.4 51.6 ± 0.5

+ clustering (tc = 0) 53.4 ± 0.9 51.0 ± 0.8

+ clustering 55.0 ± 1.1 52.5 ± 0.7

+ refinement (Random) 57.2 ± 1.2 53.1 ± 1.3

+ refinement (Importance) 58.1 ± 0.4 53.7 ± 0.8

+ refinement (Ours) 59.4 ± 0.3 54.3 ± 1.2

Clean 63.5 ± 0.7 60.7 ± 0.8

(·)/50k∗: to balance the numbers of ID and OOD samples, we sample 50k images from classes other than (·)
in DomainNet-Real as OOD samples
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Fig. 5 The performance of FixMatch (Sohn et al., 2020), Clean and our
method against four different ID/OOD ratios on CIFAR-100

and 30/70. Such a constant improvement justifies the robust-
ness of ourmethod against different settings of ID/OODratio.
Note that the increase in the ID class number causes the
degradation of performance in all three models.

5.7 Performance on ID/OOD Classification

Following previous studies (Saito et al., 2021), we also com-
pare the performance of our method with those of previous
open-set semi-supervised learningmethods on ID/OODclas-
sification. The experiments are conducted on CIFAR-100
with two different settings and the AUROC values of each
method are shown in Table 6. As shown in the table, despite
the imbalance between ID and OOD samples, our method
achieves a significant improvement over previous methods.
Please note that we use the output probabilities of the pre-
dicted class as ID probabilities to compute the AUROC value
of FixMatch.

5.8 Justification of our Choice on the Number of
Pools

To justify our choice of using a cascade of two pools in
importance-based sampling, we investigate how the num-
ber of pools Npool influences the performance of our method
(Table 7) onDomainNet-Real with two ID/OOD settings. All
other hyperparameters are kept the same across all experi-

Table 6 Comparison of AUROC values for ID/OOD classification

Datasets CIFAR-100
ID/OOD 10/90 20/80

FixMatch 60.2 ± 0.2 57.0 ± 0.3

MTCF 70.6 ± 1.1 68.9 ± 1.4

OpenMatch 72.3 ± 0.8 71.5 ± 0.2

Our Method 79.6 ± 0.7 73.5 ± 0.5

Table 7 The performance of our method against different numbers of
pool level N on DomainNet-Real

Dataset DomainNet-Real
ID/OOD 10/50k 20/50k

Ours(Npool = 0) 55.0 ± 1.1 52.5 ± 0.7

Ours(Npool = 1) 57.8 ± 0.7 53.2 ± 1.1

Ours(Npool = 2) 59.4 ± 0.3 54.3 ± 1.2

Ours(Npool = 3) 58.9 ± 0.6 52.3 ± 0.9

Ours(Npool = 3) 56.8 ± 1.0 50.9 ± 1.3

Table 8 The performance of our method against different Nid on
DomainNet-Real

Dataset DomainNet-Real
ID/OOD 10/50k 20/50k

Ours(Nid = 5) 59.6 ± 0.6 53.8 ± 0.9

Ours(Nid = 6) 59.4 ± 0.3 54.3 ± 1.2

Ours(Nid = 7) 58.7 ± 0.5 54.0 ± 1.0

Ours(Nid = 8) 58.1 ± 0.5 53.1 ± 0.6

ments. It can be observed that: (i) using two pools achieves
the best performance for both ID/OODsettings; (ii) when set-
ting the number of pools to 0 or 1, the density of ID samples
is not high enough and thus worsens the minibatch training;
(iii) when using three or four pools, the density is improved
but at the cost of filtering out too many unlabeled (ID) sam-
ples, which yields overfitting and also worsens the training.
Thus, we use a cascade of two pools in our importance-based
sampling implementation.

5.9 Threshold of ID/OOD Identification

The ID/OOD identification of our method selects Nid proto-
types that are closest to the feature center of labeled samples
as ID prototypes. To investigate the influence of Nid selec-
tion, we test our method on DomainNet-Real with two
ID/OOD settings and the results are shown in Table 8. It can
be observed that our method performs better than the base-
line with different Nid and the best performance is achieved
at 6 for 20/50k and 5 for 10/50k.

5.10 Number of Prototypes

To investigate how the number of prototypes influences the
performance of our method, we test different choices of it
on DomainNet-Real with two ID/OOD settings and show
the results in Table 9. It can be observed that our method is
insensitive to the number of prototypes and outperforms the
baseline (FixMatch (Sohn et al., 2020)) in all experiments.
Thus, we suggest to set the default value on DomainNet-Real
as 30 (as used in this paper).
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Table 9 The performance of our method against the number of proto-
types K on DomainNet-Real

Dataset DomainNet-Real
ID/OOD 10/50k 20/50k

Ours(K = 20) 58.7 ± 0.4 52.9 ± 1.3

Ours(K = 25) 59.0 ± 0.6 53.7 ± 0.9

Ours(K = 30) 59.4 ± 0.3 54.3 ± 1.2

Ours(K = 35) 58.3 ± 0.8 53.4 ± 0.8

Ours(K = 40) 57.1 ± 1.0 52.7 ± 0.5

5.11 Other Hyper-parameters Analysis

We further provide the performance of our method against
different clustering threshold tc, loss weight of Lc, the size
of sample pools for each class NP and the prototype initial-
ization size L in Table 10. For each hyper-parameter, we test
our method with four different settings on DomainNet-Real
20/50k. It can be observed that our method can achieve the
best performance with tc = 0.70, wLc = 0.1, NP = 300
and L = 250. Besides, our method stably outperforms the
FixMatch baseline in all settings.

5.12 Effectiveness of Cascading Pools

To further justify the effectiveness of our cascading pool-
ing strategy, we plot the density of ID samples in our two
cascaded ID sample pools (with per-class capacity 300 and
150 respectively) against training epochs when training our
model with the DomainNet-Real 20/50k setting (Fig. 6). We
also marked the percentage of ID samples in the raw unla-
beled dataset as “Random Selection”. It can be observed
that: (i) Our two pools have much higher ID sample den-
sities than Random Selection (approximately 10% and 20%
respectively), which justifies the usefulness of our approach.
(ii) Pool 2 has a much higher ID sample density than Pool
1 (approximately 10%), which indicates the effectiveness of
our cascading pooling strategy.

Table 10 The performance of our method against different tc,wLc , NP
and L (DomainNet-Real 20/50k)

tc 0.55 0.65 0.70 0.75

Ours 52.0 ± 0.9 52.9 ± 1.3 54.3 ± 1.2 52.8 ± 1.2

wLc 0.05 0.1 0.15 0.2

Ours 53.3 ± 0.5 54.3 ± 1.2 53.9 ± 0.8 52.6 ± 0.6

NP 250 300 350 400

Ours 52.8 ± 1.6 54.3 ± 1.2 53.9 ± 1.0 53.0 ± 0.9

L 150 200 250 300

Ours 53.7 ± 1.1 54.0 ± 0.9 54.3 ± 1.2 53.9 ± 0.8

Fig. 6 Justification of ID sample refinement (DomainNet -Real
20/50k). The ID sample density of our ID sample pools is much higher
than that of the raw unlabeled dataset (Random Selection)

5.13 Performance on Fine-Grained Classification

Fine-grained classification (Akata et al., 2015; Yang et al.,
2018; Dubey et al., 2018; Syeda-Mahmood et al., 2020; Zhu
et al., 2019) aims to distinguish between objects that previ-
ously belong to the same (coarse-level) class, e.g., species
of birds. Recently, there have been some studies that apply
open-set semi-supervised learning on fine-grained classifi-
cation (Su et al., 2021), whose datasets contain both ID and
OODdata. This is amore challenging task as samples in fine-
grained classes (e.g., different brands of cars) have fewer
discriminative features. In this section, we also verify the
effectiveness of our method on fine-grained classification.
Datasets. Following previous studies (Su et al., 2021),
we evaluate our method on two fine-grained datasets that
exhibit a long-tailed distribution of classes and contain a
large number of out-of-class images: Semi-Aves (from the
semi-supervised challenge at FGVC7 workshop (Su &Maji,
2021)) and Semi-Fungi (from the FGVC fungi challenge
(Brigit & Yin, 2018)). The OOD images of both datasets
are those that do not belong to the classes of the labeled
set. Between them, Semi-Aves contains 200 ID classes and
800 OOD classes, and 6K/27K/122K images in labeled
set/ID unlabeled set/OOD unlabeled set, respectively. Semi-
Fungi contains 200 ID classes and 1194 OOD classes, and
4K/13K/65K images in labeled set/ID unlabeled set/OOD
unlabeled set, respectively. Following (Su et al., 2021), we
use the labeled and unlabeled set (containing both ID and
OOD samples) provided by these datasets and ResNet-50
(He et al., 2016) as the backbone network for evaluation.
All samples are resized to a resolution of 224×224 in all
experiments.
Comparison Setup. Following (Su et al., 2021), we com-
pare ourmethod to the following counterparts: (i) Supervised
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Table 11 Results on Semi-Aves
benchmark

Method Top-1 Top-5

Supervised baseline 20.6 ± 0.4 41.7 ± 0.7

Pseudo-Label (Lee et al., 2013) 12.2 ± 0.8 31.9 ± 1.6

Curriculum Pseudo-Label (Cascante-Bonilla et al., 2021) 20.2 ± 0.5 41.0 ± 0.9

FixMatch (Sohn et al., 2020) 19.2 ± 0.2 42.6 ± 0.6

Self-Training 22.0 ± 0.5 43.3 ± 0.2

Ours 26.9 ± 0.5 48.4 ± 0.8

Supervised oracle 57.4 ± 0.3 79.2 ± 0.1

We experiment with six different SSL methods as well as supervised baselines. Results of other methods are
copied from (Su et al., 2021)

Table 12 Results on
Semi-Fungi benchmark

Method Top-1 Top-5

Supervised baseline 31.0 ± 0.4 54.7 ± 0.8

Pseudo-Label (Lee et al., 2013) 15.2 ± 1.0 40.6 ± 1.2

Curriculum Pseudo-Label (Cascante-Bonilla et al., 2021) 30.8 ± 0.1 54.4 ± 0.3

FixMatch (Sohn et al., 2020) 25.2 ± 0.3 50.2 ± 0.8

Self-Training 32.5 ± 0.5 56.3 ± 0.3

Ours 34.4 ± 0.4 58.0 ± 0.8

Supervised oracle 60.2 ± 0.8 83.3 ± 0.9

We experiment with six different SSL methods as well as supervised baselines. Results of other methods are
copied from (Su et al., 2021)

baseline, where the model is trained only with the labeled
set; (ii) Pseudo-Labeling (Lee et al., 2013), which uses a base
model’s confident prediction on unlabeled images as pseudo-
labels, and then trains a new model by sampling half of the
batch from labeled data and half from pseudo-labeled data;
(iii) Curriculum Pseudo-Labeling (Cascante-Bonilla et al.,
2021), which repeats the following for 5 times: training a
supervised model with labeled data, and expanding labeled
data by including ({20, 40, 60, 80, 100}% of) the unlabeled
data with the highest predictions. (iv) FixMatch (Sohn et al.,
2020); (v) Self-Training, which first trains a teacher model
with the labeled set, and then trains a student model with a
scaled cross-entropy loss on the unlabeled data and a cross-
entropy loss on the labeled data. (vi) Supervised Oracle,
which trains the model with the labeled set and ID unlabeled
set with ground-truth labels.

As shown in Tables 11 and 12, our method significantly
outperforms all previous methods, which demonstrates the
effectiveness of our method on fine-grained classification.

5.14 Visualization of ID/OOD Features

In this section, we visualize the features of unlabeled sam-
ples with and without our method using t-SNE (Van der
Maaten & Hinton, 2008). We apply our method to CIFAR-
10 to obtain the features as CIFAR-10 only contains 10
classes to be visualized. To better illustrate the difference
and distribution of ID/OOD features, we select all 10 classes

in CIFAR10 (Krizhevsky et al., 2009) rather than datasets
with more categories in our experiment. We set the first 5
classes in CIFAR10 as ID and the other 5 classes as OOD.
The feature visualization is shown in Fig. 7, including the
visualization of both baseline (FixMatch) and our method.
As shown in Fig. 7a, the baseline model can not separate
the ID and OOD features well and thus confuses the OOD
detector. Nevertheless, in Fig. 7b, ourmethod can better clus-
ter both ID/OOD features and thus preserves the difference
between ID andOOD features in the feature level. Therefore,
ourmethod facilitates the training of the feature extractor and
the ID/OODclassification in the importance-based sampling.

Figure 8 visualizes some image samples during the train-
ing onCIFAR-100 20/80. Three classes of images are shown:
Boy, Bicycle, and Apple. For each class, we visualize the ID
labeled data, ID unlabeled data, and In-Pool OOD unlabeled
data. The ID unlabeled data and In-Pool unlabeled data are
the samples that are stored in the cascading sample pool and
utilized in the clustering loss. As shown in Fig. 8, our method
tends to store the unlabeled samples in the poolswith textures
similar to the ID labeled samples. Besides, we further visual-
ize Out-of-Pool OOD unlabeled data, which are the samples
that are filtered by ID sample identification and not stored in
the pools.
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Fig. 7 The t-SNE feature visualization on CIFAR-10. a Provides the
feature visualization of FixMatch. b Shows the t-SNE results of our
method. As shown in the figures, our method organizes both ID and
OOD features and improves the feature extractor

Fig. 8 The visualization of ID labeled data, ID unlabeled data, in-pool
OOD unlabeled data, and out-of-pool OOD unlabeled data on CIFAR-
100 during training. The OOD unlabeled data with similar textures to
ID samples are more likely to be stored in sample pools and utilized for
model training with the clustering loss

6 Conclusion

In this paper, we reveal that the proper use of OOD samples
can benefit semi-supervised learning (SSL). Accordingly, we
propose two techniques for open-set SSL: (i) a prototype-
based clustering and identification algorithm and (ii) an
importance-based sampling method. Our prototype-based
clustering and identification algorithm clusters samples at
the feature level and thus achieves better identification of ID
and OOD samples by increasing their distances in-between.
Addressing the sampling bias introduced by the ID/OOD
identification process, we propose an importance-based sam-
pling method that maintains a pyramid of sample pools
containing samples that are important to SSL. We imple-
mented our method on top of FixMatch (Sohn et al., 2020)
and achieved state-of-the-art in open-set SSL on extensive
public benchmarks.
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